Bir Eşitsizlik Üzerine

İ. Ferit Öktem

Bu yazımızda

\begin{equation}\label{1} P_n = \prod_{k=1}^n \Big( 1 – \frac{1}{2k}\Big) \hspace{2cm} (1)\end{equation}

çarpımının (Bkz. Matematik Dünyası C:1, S:1, A5)

\[\frac{1}{\sqrt{\pi(n + \frac{1}{2})}} < P_n < \frac{1}{\sqrt{\pi n}}\hspace{2cm} (2)\]

eşitsizliğini sağladığını göstermek istiyoruz.

Önce

\[\prod_{k = 1}^n (2k -1) = (2n – 1)!!, \prod_{k=1}^n (2k) = (2n)!!\hspace{2cm} (3)\]

tanımlarını kullanarak

\[P_n = \frac{(2n – 1)!!}{(2n)!!}\hspace{2cm} (4)\]

yazabiliriz. Şimdi, \(n\) negatif olmayan bir tamsayı olmak üzere,

\[I_n = \int_0^{\frac{\pi}{2}} \sin^n x\, dx \hspace{2cm} (5)\]

integralini gözönüne alalım:

\[I_0 = \frac{\pi}{2},\,\, I_1 = 1,\,\, I_n = \frac{n-1}{n}I_{n-2}\,\,\,\, (n>1)\hspace{2cm} (6)\]

bağıntılarından $n\ge 1$ için

\[I_{2n – 1} = \frac{1}{2n}\frac{(2n)!!}{(2n-1)!!}, \;\; I_{2n} = \frac{\pi}{2}\frac{(2n – 1)!!}{(2n)!!},\]

\[I_{2n+1} = \frac{1}{2n + 1}\frac{(2n)!!}{(2n-1)!!}\hspace{2cm} (7)\]

olur. Öte yandan

\[ \sin^{2n +1} x < \sin^{2n} x < \sin^{2n -1}x \;\; (0 < x < \frac{\pi}{2}) \hspace{2cm} (8) \]

ve (5) ten dolayı

\[ I_{2n +1} < I_{2n}< I_{2n – 1} \hspace{2cm} (9)\]

eşitsizlikleri geçerlidir. Böylece (4), (7) ve (9) sonucu

\[ \frac{1}{(2n+1)P_n} < \frac{\pi}{2}P_n < \frac{1}{2nP_n}\hspace{2cm} (10) \]

bulunur. (10) un her yanını $\frac{2}{\pi}P_n$ ile çarptıktan sonra karekök alınırsa (2) eşitsizlikleri elde edilir.

Bu eşitsizliklerin bir sonucu olarak

\[ P_n = \frac{1}{\sqrt{\pi(n+\theta_n)}},\;\; 0 < \theta_n < \frac{1}{2} \hspace{2cm} (11)\]

koşullarını sağlayan bir $\theta_n$ sayısının varlığı ve

\[\lim_{n \to \infty} \sqrt{n} P_n = \frac{1}{\sqrt{\pi}}\hspace{2cm} (12)\]

bağıntısı (Wallis formülü) de ispatlanabilir.

Not: Bu yazı Matematik Dünyası Dergisi arşivinden siteye eklenmiştir. Yazı ilk olarak derginin 1991 yılı 3. sayısında yer almıştır. Matematik Dünyası arşivi titiz bir çalışma ile çevrim içi platformlarda yeni okuyucularıyla buluşuyor. Bu yazıyı burada okunabilir hale getiren tüm gönüllü arşiv ekibimize teşekkür ediyoruz. Yazıyı PDF olarak okumak için PDF arşivine buradan ulaşabilirsiniz.

- Son sayıyı sipariş vermek için tıklayın. -Newspaper WordPress Theme

Son eklenen yazılar

Avrupa Matematiği: Pullardaki Tarih

Yazar: Robin Wilson The Open University (Çeviri: Olcay Coşkun) Yıl: 2023-4 Sayı: 118 Dünya çapındaki yüzlerce pulda matematiğin ve tarihinin bulunması şaşırtıcıdır. Portorož’daki 8ECM (8’inci Avrupa Matematik...

Matematik Tarihinin, Matematik Öğretimine Yansımaları

Yazarlar: Ali Bülbül, Nazan Sezen Yüksel Yıl: 2023-4 Sayı: 118 Matematiğin icat mı yoksa keşif mi olduğu sorusunun henüz net bir cevabı olmamakla birlikte, matematik hakkında...

Hiyeroglifteki Kesirler Etkinlik Planı

Yazar: Eda Aydemir Kayacan (edaaydemir@gmail.com) Yıl: 2023-1 Sayı: 115 Dünyanın birçok yerinde, kesirler konusu ilköğretim matematik müfredatlarında geniş yer tutmaktadır. Çoğu zaman kullanılan örneklerin günlük hayattan uzak...